
The Delft MS Curriculum on Embedded Systems
Hans-Gerhard Gross

Delft University of Technology
Mekelweg 4, 2628 CD Delft, NL

+31 15 27 87750

H.G.Gross@tudelft.nl

Arjan van Gemund
Delft University of Technology

Mekelweg 4, 2628 CD Delft, NL
+31 15 27 87666

A.J.C.vanGemund@tudelft.nl

ABSTRACT
Embedded Systems (ES) is the fastest growing sector in ICT tech-
nology [1][18]. Also in the Dutch economy, this sector is believed
to become an important generator of added value. In this paper we
describe a new MS program on ES that is offered in Delft as of
the academic year 2006/2007. The MS program is a joint offering
by the three Universities of Technology within The Netherlands
(at Delft, Eindhoven, and Twente). We describe the program, its
rationale, and two examples of already existing courses (Embed-
ded Systems and Real-Time Systems), from which the new ES
curriculum has emerged.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education; Curriculum

Keywords
Embedded systems, Curriculum

1. INTRODUCTION
Amongst the 13 universities present in The Netherlands, three of
them have a distinct focus on scientific engineering. These uni-
versities are

1. Delft University of Technology [5],

2. Eindhoven University of Technology [7], and

3. University of Twente [26].

For many years each of these three universities offer BS and MS
programs in Computer Science (CS) and Electrical Engineering
(EE), and in the case of Delft, also an MS program Computer
Engineering (CE).

In sync with the international trend, within The Netherlands there
is a growing understanding that ES can no longer be designed in
terms of two separate threads of hardware and software that are
merged at a later stage [1]. A systems approach is required that
mixes functional and non-functional requirements from the start.
Central to this approach is the need to understand the interaction
of the system with its physical and network environments. These
changes require engineering teams that possess skills in a wide
range of disciplines such as computer science, electrical engineer-
ing, real-time computing, systems architecture, control engineer-
ing, signal processing, security and privacy, computer network-
ing, mathematics, hardware, sensors and actuators. Engineering
teams are currently unable to effectively consider fundamental
design issues from all these perspectives simultaneously, because
they lack the common background and technical language to in-
teract efficiently. Creating these multidisciplinary skills requires

fundamental changes in engineering education, and, since a num-
ber of years, many courses and curricula on ES have emerged
[6][19][20][23]. Motivated by

1. the need for ES engineers at MS level, that master, or at
least are comfortable with the above range of multidis-
ciplinary engineering subjects, and

2. given the ever increasing disparity between the current,
discrete-domain driven CS curricula and the predomi-
nantly continuous-domain driven EE curricula,

the Dutch Ministry of Education has approved the implementation
of a new MS program on ES, slated for the academic year 2006.
Note, that it is not the intention (nor possible) to ’retrain’ CS
bachelors to EE masters, nor EE bachelors to CS masters. An
important motivation of an MS program on ES is that the bachelor
becomes comfortable with the complementary domain. For in-
stance, a graduated ES master with a BS CS will much better
understand the language and tools of EE engineers, and has better
feeling with the EE problems, and vice versa. In this way, they
can more effectively work together on ES.

Unlike traditional programs, for reasons of efficiency1, the Minis-
try has stipulated that in order to receive accreditation, the ES
program be offered jointly by the three Dutch technical universi-
ties, which have recently been federated under the joint brand
name 3TU (TU = technical university). The 3TU can be seen as a
“virtual university” providing educational programs in five dis-
tinctive centers, i.e., Multi-scale Phenomena (fluid mechanics),
Bio-Nano Applications, Intelligent Mechatronic Systems, De-
pendable ICT Systems (the center for the master program Embed-
ded Systems), and Sustainable Energy Technologies. This unified
national approach to the programs means that they share the same
basis at each of the three universities. The graduation require-
ments are also the same, although the content of the students’
specializations may have a different emphasis depending on the
local situation. The program and exit qualifications are compara-
ble. Aspects such student intake/admissions and quality assurance
are organized jointly as far as possible. Students follow the joint
foundation part of the program at the university with which they
have registered (Delft, Eindhoven or Twente). In the specializa-
tion phase, students make a clear choice of a specific direction in
their programs. It is also possible and advisable for students to
follow part of the program at one of the other two universities.
While the joint offering through the 3TU implies that all Dutch
students learn a national MS degree Embedded Systems (issued

1 No more than some 100 students are expected to register nation-
wide.

1

by 3TU), the current implementation still allows some room for a
local Delft, Eindhoven, and Twente differentiation.

In this paper we describe the MS program Embedded Systems as
offered by Delft University of Technology. Although some 80
percent of the two-year program2 is identical for all three univer-
sities, the Delft program has a particular focus on the following
three subjects:

1. Embedded software, rather than hardware aspects.

2. Bridging the gap between the discrete and continuous
domain.

3. System-level engineering, rather than component-level
engineering which is typical for the Dutch EE/CE pro-
grams.

Apart from describing the curriculum and its rationale, we de-
scribe two courses IN4073 and IN4024 (Embedded Systems and
Real-Time Systems, respectively) that have been offered for a
couple of years as electives within the CS master program, and
which are now part of the mandatory core of the new ES program.
In particular, the IN4073 offering can be seen as typical for the
Delft approach to ES education.

The paper is organized as follows. In Section 2, we present the
new ES curriculum as offered by Delft, and motivate the specific
focus on embedded software and multi-disciplinarity. Section 3
describes the course offering IN4073 Embedded Systems, while
Section 4 describes the Real-Time Systems course. In Section 5,
we provide some additional details on the general didactic context
in which our education is currently performed. Section 6 con-
cludes the paper.

2. DELFT ES PROGRAM
The Delft version of the 3TU masters program ES [15] is offered
by the Faculty of Electrical Engineering, Mathematics, and Com-
puter Science (EEMCS [11]), which covers the entire embedded
systems engineering spectrum from embedded software engineer-
ing to sub-micron engineering. The overall, high-level learning
goals of the ES program are laid out according to the “Dublin
Descriptors”, from the European Joint Quality Initiative [9][10].
This is an informal network for quality assurance and accredita-
tion of bachelor and master programs across Europe. The descrip-
tors define the following high-level skills for the MS cycle award:

− Knowledge and understanding: MS provide a basis or
opportunity for originality in developing or applying
ideas in a research context.

− Application of knowledge and understanding through
problem solving abilities (applied) in new or unfamiliar
environments within broader (or multidisciplinary) con-
texts.

2 Dutch MS programs are typically two-year programs, compris-
ing 120 EC. 1 EC (European Credit, defined through the Euro-
pean Credit Transfer System, ECTS) stands for 28 hours of nomi-
nal study load.

− Making judgments: MS demonstrates the ability to inte-
grate knowledge and handle complexity, and formulate
judgements with incomplete data.

− Communication of their conclusions and the underpin-
ning knowledge and rationale (restricted scope) to spe-
cialist and non-specialist audiences.

− Learning skills: MS study in a manner that may be
largely self-directed or autonomous.

In summary, the program aims to bring students into the position
to develop and apply new research ideas in a multidisciplinary
working context, integrate their knowledge to solve complex
problems, and make judgments based on limited or incomplete
information, reflect on the socio-ethical impact of their judg-
ments, and communicate their decisions, solutions, and reflections
to other people even outside of their field.

The MS Embedded Systems program has the following overall
structure:

− Mandatory courses (40 EC). This is the common core of
the ES program. Up to 10 EC of the mandatory part
consists of so-called homologation courses to equalize
the differences in previous educational backgrounds.

− Elective courses (40 EC). The electives span a broad
range from control theory to sub-micron Si realization.
Up to 20 EC of the elective program can be taken in
terms of a traineeship, preferably carried out with an in-
ternational company or research institute.

− Thesis project (40 EC). The thesis project includes an
introductory (10 EC) individual project in preparation.
This individual project is tailor-made and may contain
such elements as literature surveys related to the final
project’s subject, preparatory research studies, or addi-
tional specialist courses, whatever is needed to make the
student well-prepared for the project.

Whereas the scope of the electives and thesis project is equal for
all three universities, the differentiation between the universities
lies in the mandatory part. Consequently, in the following, we
will focus on the mandatory part of the curriculum.

2.1 Delft Focus
With regard to the mandatory part of the program, Delft has a
particular inclination towards embedded software, dependable
systems, and multi-disciplinarity.

2.1.1 Embedded Software
As an increasing amount of functionality shifts from hardware to
software, embedded software engineering cost is becoming the
bottleneck in embedded system development. A contributing fac-
tor is the ever decreasing cost of (field) programmable hardware
(microcontrollers, FPGAs), which often outweigh the advantages
of devising application-specific silicon solutions. This applies in
particular to the Dutch context3 where, on a whole, more valori-

3 In a hardware sense The Netherlands is essentially an import
economy.

2

zation is likely to occur in the software system (specification,
integration) domain, than in the processor domain4.

Another important aspect of the above Delft orientation towards
systems and software with respect to the ES program, is the fact
that Delft, unlike Twente and Eindhoven, already has a MS pro-
gram CE in place for a number of years. Although the Delft CE
program does include compilers, system software, and operating
systems, the main aim of the program is to produce experts in
computer architecture and the development and implementation
of computer hardware (for example, more than 25 percent of its
mandatory core is entirely devoted to computer arithmetic). Al-
though there is overlap between the CE and ES programs with
respect to embedded systems, the Delft CE program effectively
focuses on hardware issues5. In a sense, the Delft ES program
seeks to complement the existing CE program, by focusing on
embedded software, multi-disciplinarity, and system-level engi-
neering, rather than embedded hardware, and component-level
engineering.

2.1.2 Dependable Systems
Furthermore, the increasing level of connectivity that comes with
“ambient intelligence” is leading to increased availability of data
and information, anywhere and at any time. This offers a huge
potential, but also presents tough challenges in terms of interop-
erability, efficiency, complexity and vulnerability. Embedded
systems must also be safe and reliable: it is important that in-
creased complexity does not compromise their dependability. In
line with this emphasis on embedded software and dependability,
Delft has established a new (part-time) chair Embedded Software
that performs research and education on embedded software and
dependability [8].

2.2 Homologation
Similar to Twente, a specific feature of the Delft approach is that
a part of the mandatory program is devoted to what is called ho-
mologation. Homologation is a an equalization process aimed at
achieving homogeneity with respect to the student’s starting level,
in view of the fact that the MS program is typically entered by CS
and EE bachelors which have quite a different background. For
example, Dutch students with an EE BS will lack knowledge and
experience in, e.g., programming, operating systems, and software
engineering, whereas Dutch students with a CS background will
generally lack knowledge and experience with, e.g., logic design,
control theory, and signal processing. As indicated earlier, the
purpose of the ES program is to essentially integrate the CS and

4 In this view, hardware synthesis based on HDLs is considered a
software approach. Actually, in the CS bachelor program, a so-
phomore course on HDL programming is envisaged for the aca-
demic year 2007.
5 It is worth mentioning that the Dutch situation with respect to
CE slightly differs from that in the US. The CE Body of Knowl-
edge (BOK) in the US has naturally included embedded systems
(denoted ES-ESY) from the outset, even though it has recently
been acknowledged that an ES BOK should somewhat extend this
CE BOK. With only one (Delft) CE program in The Netherlands,
which, compared to the CE BOK, is more hardware-oriented,
there is even more point to start a new ES program than in the US.

EE disciplines, rather than just providing an ES flavor to CS and
EE bachelors, who would then maintain their respective path
through the electives and final project without meaningful cross-
fertilization. Hence, the first 10 EC of the master program, called
the homologation phase, provide specific subjects to remedy the
differences in background. Depending on a student’s background,
some of these subjects will be mandatory. The following homolo-
gation courses are mandatory for students with a CS background:

− Modeling an Control Theory (6 EC). Subjects taught in
this course comprise modeling and analysis of continu-
ous/discrete-time dynamic systems, modeling of physi-
cal processes, linear-time invariant systems, design of
feedback control systems, and stabilization of unstable
systems.

− Digital Signal Processing (4 EC), for students who have
taken the Software Technology variant in the CS bache-
lor program. Subjects taught comprise basic signal
process techniques, such as sampling, filtering and sig-
nal transformation; furthermore, principles of signal
processing, such as harmonic signals, spectral represen-
tation, Fourier transforms, sampling and aliasing, FIR
filters, IIR filters convolutions, and spectral analysis.

− Digital Systems (4 EC), for students who have the Me-
dia and Knowledge Engineering variant of the CS
bachelor program. Subjects include the fundamental no-
tions of digital systems such as combinational and se-
quential networks; this encompasses logic operations,
switching functions, combinational ICs, 2-level gate
networks, Karnaugh maps, multi-level gate networks,
binary decoders and encoders, number representations,
Mealy and Moore machines, finite memory systems,
programmable hardware, and more complex digital sys-
tems such as execution graphs, functional and control
building blocks, and analysis of RTL systems.

Students coming from an EE bachelor background have to regis-
ter for the following mandatory homologation courses:

− Operating System Concepts (3 EC). Subjects include
function and structure of OS, system calls, virtual ma-
chines, processes and threads, context switching and
schedulers, process communication, simulation, multi-
processing and synchronization, mutual exclusion,
deadlock conditions, detection and prevention, file sys-
tems, RAID systems, authentication, and other OS-
related subjects.

− Systems Programming (2 EC). Subjects comprise OS
structures, compilers, I/O, pointers/arrays, function
pointers and the like, primarily programming in C.

− Software Engineering (5 EC). This course addresses the
problems occurring during development, installation,
and maintenance of complex, large-scale software sys-
tems; subjects are OO development, applying the UML,
requirements elicitation and analysis, system design,
testing, and project management.

Homologation is seen as a crucial instrument to acquire a com-
mon background to achieve early integration between the various
disciplines. It provides the students with the broadening that is

3

required to effectively absorb the multidisciplinary program that
lies ahead.

2.3 Mandatory Courses
As mentioned earlier, the 40 EC mandatory part includes a 10 EC
homologation phase and a 30 EC common core. For a student
with a Delft CS bachelor degree, the mandatory homologation
subjects are Systems and Signals, Control Theory, Logic Design,
and Digital Signal Processing. For a student with a Delft EE
bachelor degree, the mandatory subjects are Operating Systems,
Systems Programming (using C), and Software Engineering (us-
ing Java). While the homologation phase establishes a common
background, the following 30 EC offerings essentially constitutes
the common core of the curriculum:

− IN4087 System Validation (4 EC). This course is
mainly about the application of formal models to sys-
tem design, including model checking, syntax and se-
mantics of temporal logics, implementation techniques,
timed automata, plus tool support to study communica-
tion protocols and hardware designs (TLA+, UPPAAL).

− IN4088 Software Testing and Quality Engineering (4
EC). This course deals with methods, tools and tech-
niques for testing technical computer systems on one
side, and for improving the testability of these systems
in terms of better design, on the other side.

− IN4024 Real-Time Systems (6 EC, detailed in Section
4).

− ET4282 Performance Analysis (4 EC). The course ap-
plies probability theory and the theory of stochastic
processes to the design and performance evaluation of
telecommunication and computer systems; computation
with random variables is reviewed, Markov processes
and queuing theory, furthermore "quality of service
(QoS)" provisioning, and computation of blocking prob-
abilities in communication systems.

− IN4073 Embedded Systems (6 EC, detailed in Section
3).

− ET4165 Embedded Computer Architecture (6 EC). Sub-
jects taught include architectures and organizations of
the newest microprocessors, ranging from high-
performance desktop processors such as the Pentium 4
to processors targeted at the embedded market such as
the TriMedia; latest developments in computer architec-
ture research; design decisions in terms of performance
and cost, such as cost, price, and performance, (embed-
ded) benchmarks; furthermore instruction set principles,
micro-controller architectures, instruction sets targeted
at media and signal processing, reduced code size; re-
view of pipelining, super-pipelining; dynamic exploita-
tion of ILP, super-scalar processors, out-of-order execu-
tion, branch prediction, speculative execution; static ex-
ploitation of ILP, VLIW processors, compiler support
for exposing ILP, design of advanced memory hierar-
chies, non-blocking caches, pre-fetching, caches and
power, real-time performance, etc.

Compared to the two sister universities in Eindhoven and Twente,
the above program has a distinct focus on systems, software, and
dependability. It should be kept in mind, however, that next to the
40 EC thesis work, the remaining 40 EC electives offer a very
broad scope, ranging from control engineering to sub-micron Si
realization, parts of which can be taken from any of the three
universities.

2.4 Elective Courses
Describing all elective courses (around 50) would go well beyond
the scope of this paper. We can therefore only provide a non-
exhaustive list of the courses offered: Embedded Systems (5 EC),
Transmission Systems Engineering (4 EC), Methods and Algo-
rithms for System Design (5 EC), Computer Systems Testing (4
EC), Computer Architecture (4 EC), Advanced Image Processing
(4 EC), Signal Processing for Communications (4 EC), Informa-
tion Theory (4 EC), Electronic Design Automation (4 EC), Reli-
ability Engineering (4 EC), Silicon Sensors (4 EC), Displays and
Actuators (4 EC), Microsystems Integration (4 EC), Multimedia
Compression (6 EC), Statistical Signal Processing (4 EC), Cryp-
tography (4 EC), System Design with HDLs (2 EC), Mobile and
Wireless Networking (4 EC), Introduction to Microprocessors (2
EC), VLSI Systems on Chip (4 EC), Advances in Networking (5
EC), Computer Arithmetic (9 EC), Real-time Artificial Intelli-
gence and Automatic Speech Recognition (6 EC), Expert Systems
in a Technical Environment (6 EC), Neural Networks (6 EC),
Compiler Construction (6 EC), Advanced Software Engineering
(6 EC), Parallel Algorithms and Parallel Computers (6 EC), Co-
operative Agent-based Systems (5 EC), High-Performance Com-
puting (6 EC), Software Architecture Recovery and Modeling (6
EC), Computational Logic and Satisfiability (6 EC), Heuristic
Search Methods (6 EC), Programming with C++ (3 EC), Pattern
Recognition (6 EC), Model-based Computing (5 EC), System
Specification Models (5 EC), Enterprise Ontology & Business
Components (6 EC), Distributed Algorithms (6 EC), Multimedia
Computing (4 EC), Digital Audio & Speech Processing (6 EC),
Modern Robotics (4 EC), Modeling & Control of Hybrid Systems
(3 EC).

The full list of courses including descriptions can be obtained
from the study information system of TU Delft [21]. Elective
courses are chosen by students based on consultation with the MS
ES coordinator of the faculty and the supervising professor of the
thesis project.

2.5 Soft Skills
Apart from the technical skills taught in the curriculum, at Delft
University of Technology, there is also a strong focus on develop-
ing the so-called soft-skills of students. This comprises communi-
cative skills, writing skills, the knowledge of social and ethical
implications of technology, addressing the more general require-
ments of the Dublin Descriptors for awarding an MS degree. The
courses intended to train these soft-skills are provided by the fac-
ulty of Technology, Policy and Management [12]. The following
list gives an indication of the range of soft-skills that students can
acquire: teamwork, conflict resolution and negotiation, project
management, knowledge management, technical writing, presen-
tation techniques, discussion techniques and moderation, argu-
mentation knowledge and methodology, critical reflection on
technology, privacy of people, management of technology, turn-
ing technology into business, marketing, risk assessment, technol-

4

ogy and global development, and several language courses for
English, French, Spanish, Italian.

3. COURSE: EMBEDDED SYSTEMS
The course IN4073 Embedded Systems [13], now part of the
mandatory ES curriculum, originates from an elective offering as
of 2004 within the Delft CS master’s curriculum (and is still being
offered at CS). Based on the new guidelines for quality teaching
at Delft described in more detail in Section 5, the course is pri-
marily aimed at providing the students with hands-on experience
with designing embedded systems that perform non-trivial tasks.
The main ingredient of the 6 EC course is a lab project carried out
by 12 competing teams of around 5 students per team, where each
team must design an embedded system to control a model heli-
copter. Due to financial restrictions, each team has (supervised)
access to the lab for only 7 slots of 4 hours per slot. This implies
that most of the work must be prepared by the teams outside lab
hours, while the actual testing is to be done during the 7 slots.

The course has been taken by some 55 MS students each year, of
which some 50 pass the course. The students’ background is
mostly CS (60 percent) and CE (30 percent). Future editions will,
of course, include the new ES students. As the lab work is essen-
tially multidisciplinary, each team is composed of a mix of CS
and CE students, which usually presents a first-time opportunity
to get acquainted with different engineering backgrounds. Apart
from the lab work, the course includes a number of supporting
lectures, as to provide the necessary background knowledge to
successfully perform the lab work. Given the large focus on lab
work, a support web site is provided [14] that contains various
resources, rather than a text book. In any case, embedded systems
text books are usually very much oriented towards a particular
hardware architecture, instruction set, and/or programming model.
As indicated earlier, our approach towards embedded hardware
synthesis is through software. Consequently, in the design lab,
hardware is programmed in terms of VHDL and C virtual ma-
chines only, where hardware particulars are reduced to a few
trivialities such as memory mapping registers of the (VHDL)
devices in the C programming model, and setting interrupt routine
function pointers. The goal of the 6 EC credits course is not to
have the student master all multidisciplinary skills of embedded
systems engineering, but rather to have the student understand the
basic principles and problems, develop a systems view, and to
become reasonably comfortable with the various disciplines in-
volved in embedded systems design.

3.1 Lab Project
In order to describe the body of knowledge covered by the course,
we will briefly detail the lab project. The project chosen for this
course is to design embedded software to control and stabilize an
electrical model helicopter, such that it can be flown by inexperi-
enced users using a single joystick. This application has been
chosen for a number of reasons:

− The application is typical for many embedded systems,
i.e., it integrates aspects from many different disciplines
(mechanics, control theory, sensor and actuator phys-
ics/electronics, signal processing, and last but not least,
computing hardware and software).

− The application is contemporary. Today’s low-cost RC
model-helicopters are only rudimentary controlled

(simple yaw control), which implies that only skilled
hobby pilots are capable of flying these machines (i.e.,
simultaneously controlling motor speed, pitch, roll, and
yaw6) without crashing within a few seconds after lift-
off. Although perceived as the true sporting challenge,
many recreational users (the authors included) would
prefer an aerial vehicle that is much easier to handle.

− The application is typical for many air, land, and naval
vehicles that require extensive embedded control soft-
ware to achieve stability where humans are no longer
able to perform this complicated, real-time task.

− Last, but certainly not least, helicopters are great fun.

Although designing embedded software that would enable a heli-
copter to, e.g., autonomously hover at a given location, or move
to a specified location (a so-called autopilot) would by far exceed
the scope of a 6 EC course, the course project is indeed inspired
by this very ambition. In fact, the project is presented to the stu-
dents as a prototype study aimed to ultimately design such a con-
trol system, where, e.g., a pilot would remotely control the heli-
copter through a single joystick, up to the point where the heli-
copter is entirely flown by software.

3.1.1 Experimental Setup
While the ultimate embedded system would ideally be imple-
mented in terms of one chip (System-On-the-Chip, SoC) which
would easily fit within the electrical model helicopter’s limited
payload budget, the student’s prototype embedded system com-
prises an external FPGA board, that is connected to a sen-
sor/actuator electronics board that interfaces the FPGA board with
the helicopter’s actuators (rotors, servos) and sensors (gyros and
accelerometers). The system (which is perceived as part of the
helicopter) receives its commands from the so-called ground sta-
tion, which consists of a Linux PC and a joystick. In our proto-
type approach, we refrain from implementing radio communica-
tion between the helicopter and the ground station. Rather, we
conduct tethered flight, where the helicopter is connected to the
ground system through wires. This, incidentally, also allows for
prolonged testing, since low-cost helicopter batteries are usually
depleted within 20 minutes. The system setup is shown in Figure
1. As shown, an additional, analog electronics board is required to
interface the helicopter rotors, servos, and sensors to the FPGA
board. The (low-cost) board, specifically designed for the used
sensors, is realized by the authors, and features power FETs for
PWM motor control, and DC-to-PWM converters for the 3 gyros.
Although, the prototype embedded system therefore comprises
two boards (FPGA +helicopter interface), it is perfectly possible
to map all electronics within one chip onboard the helicopter7.

6 pitch, roll, and yaw are the three angles that constitute the
helicopter’s attitude in 3D.

7 In a future version, the interface electronics will be integrated
within the heli.

Joystick PC FPGA Helicopter
Electronics

HelicopterJoystick PC FPGA Helicopter
Electronics

Helicopter

Fig. 1: Hardware Setup

5

3.1.2 Resources
Rather than resorting to expensive helicopters, sensors (e.g., en-
tire IMUs), electronics, FPGAs, etc., we explicitly choose a low-
level, low-cost approach, which opens up a real possibility for
students inspired by this course to continue working with helicop-
ters and/or ES on a relatively low budget. The helicopter8 is a
low-cost (O(100) Euros) version that essentially comprises a fuse-
lage with only the main + tail motors, and the pitch + roll servos
(i.e., 4 actuators). The gyro and accelerometer sensors required to
derive the attitude (which is the minimal information for a simple
autopilot application) are also low-cost (O(50) Euros) per sensor;
at least 5 are required for proper attitude computation.

The ES hardware approach is also low-cost. Rather than using
some high-performance microcontroller (and costly development
tool suite) we use a low-cost FPGA board (O(100) Euros) featur-
ing a 400K gates Xilinx Spartan-3 (XC3S400), that comes with
free development tools. In order to allow less time-critical parts of
the ES to be conveniently developed in C rather than VHDL, an
experimental 32 bit soft core (VHDL processor component) is
provided, that interfaces with high-speed VHDL components
through shared memory. The soft core, called X32, has been de-
veloped at our Embedded Software Lab [27], and comprises the
VHDL core and associated C programming tool chain (ANSI
compiler based on lcc, assembler, linker, simulator, up-loader,
debugger). A Delft development, the X32, is license-free, allow-
ing the entire software to be used by students at home without
cost.

The PC is a standard Linux PC, that acts as development and
upload platform for the FPGA (VHDL) and the X32 soft core (C).
The PC is also used as run-time user interface, in which capacity
it reads joystick and keyboard commands, transmits setpoint
commands to the embedded system, logs telemetry data from the
embedded system, while visualizing and/or storing the data on file
for off-line inspection. The PC has a parallel port (LP), used to
upload FPGA designs to the FPGA board, and a 115,200 baud
serial link (COM) to communicate to the FPGA board at run-time.

Of course, the above low-cost approach is not without conse-
quences. A very small helicopter implies that it is highly unstable
and therefore extremely difficult to control in comparison to real
helicopters. Moreover, instead of controlling thrust using collec-
tive rotor pitch, thrust is currently controlled by motor speed,
which also adds to the stability problem. Using low-cost sensors
introduces larger measurement errors (drift) which degrade com-
puted attitude accuracy and control performance. Using a low-
cost FPGA (compared to a high-end FPGA with multiple hard
processor cores) severely reduces the size and performance of the
designs. Although the X32 occupies less than 50% FPGA space,
this leaves limited space for the additional VHDL devices (timers,
PWM converters, UART) that make up the total microcontroller
architecture. Moreover, the FPGA designs typically run at 50
MHz, which implies limited soft core processing performance,
compared to a high-end hard core. Nevertheless, practice has
shown that the low-cost setup is more than capable to perform
adequate helicopter stabilization, and provides ample opportunity
for students to get fully acquainted with embedded systems pro-

8 Currently a Piccolo V2, to be succeeded by a more sturdy TREX
450 as of next year.

gramming in a real and challenging application context that in-
cludes resource limitations.

3.2 Design Challenges
The FPGA - PC design involves components such as signal fil-
ters, yaw, roll, and pitch controllers, serial-parallel communica-
tion transceivers, pulse-width modulators/demodulators (motors,
servos), joystick/keyboard handling, and a UI (OpenGL), includ-
ing a main FSM controlling the various mode of helicopter opera-
tion (safe mode, calibration mode, yaw stabilizer-only, full
roll/pitch/yaw stabilization). The design involves a number of
challenges, including:

− concurrent real-time programming and debugging at
both FPGA and PC (e.g., scheduling/interaction of
FPGA - PC communication tasks, the PID controllers,
and signal filters),

− hardware/software co-design (determining which com-
ponents must be implemented in VHDL or C in view of
performance and space limitations),

− coping without floating point support: as many low-cost
microcontrollers, the X32 has no floating point support.
Hence, controlling and filtering must be done using
fixed-point arithmetic, which introduces stability issues,

− teamwork: producing an overall system design, and par-
titioning the overall design in components, allowing
parallelization of student effort, considering the various
differences in educational, and cultural background,

− understanding the various disciplines (mechanics, elec-
tronics, control theory, software engineering), and un-
derstanding and coping with the various interfaces (sen-
sors, motors, joystick, graphics, X32 memory and pro-
gramming model).

The supporting lectures include lectures on helicopter mechanics,
modeling, and simulation, control theory, digital filter theory,
VHDL programming, X32 architecture and programming, and
basic electronics.

3.3 Evaluation
Currently, the course has seen two editions (academic year 2005
and 2006). As to be expected with a new course, a number of
issues surfaced. In the 2005 edition, the moderate goal of the lab
was to design helicopter yaw control only (i.e., no roll and pitch
control). Even then, students found themselves struggling with
many side issues, mostly relating to insufficient prior knowledge
of VHDL. Consequently, PC—FPGA communication, which
involved designing UARTs at the FPGA side, as well as design-
ing PWM generators to control the helicopter actuators, and the
PW readers to read back sensor data (also in PWM format), gen-
erally took more than half of the lab time. As a result, only 50
percent of the teams was able to deliver a demonstrator that per-
formed helicopter yaw control.

In the 2006 edition more functionality was added to the soft core,
such as a UART, which somewhat took the load of the VHDL
part, allowing more focus on the actual control problem (which is
programmed in C on the X32). As this year’s goal was to also
deliver pitch and roll control (next to the easier yaw control),
signal filtering became a more demanding issue. At this point,

6

another deficiency became apparent, namely the fact that most
students had no prior hands-on experience with designing fixed-
point IIR filters, even though, at least half of the students had
prior exposure to a DSP course. Although the course provides a
supporting DSP lecture (a 4-hour crash course), immediately ap-
plying the fresh knowledge proved to be time-consuming. While,
on average, the 2006 results were much better than 2005, only
some 25 percent of the teams were able to demonstrate 3D atti-
tude control.

Despite the fact that most teams didn’t fully comply with the pro-
ject goals, student satisfaction and retention was very high. In
both editions of the course, less than 10 percent failed the course.
Students consistently indicated a steep learning curve, especially
with regard to the subjects outside of their curricular domain. Due
to the low-cost setup, some 10 percent of the students actually
purchased their own (FPGA) hardware to continue on private ES
projects. The time spent on the course typically exceeded the
nominal 168 study hours that stands for a 6 EC course.

One major complaint was the lack of lab time and resources. Al-
though each team had access to an FPGA board outside lab hours
(and access to two FPGA boards during lab hours plus a PC for
each team member), lab time was usually devoted to testing and
debugging (parts of) designs, which, of course, took much longer
than anticipated. A complication was the fact that there is only
one model helicopter available, leading to restrictions on helicop-
ter test time. Although, students understood that this adds to engi-
neering reality, we are inclined to investigate the (financial) pos-
sibility of increasing the level of lab support.

4. COURSE: REAL-TIME SYSTEMS
The course IN4024 Real-Time Systems [16] is also 6 EC. The
course originates from the CS curriculum in which it is still taught
as an elective module. It is obligatory in the new ES curriculum.
Both courses, IN4073 and IN4024, are complementary. The real-
time system course is intended to equip students with the basic
concepts of real-time systems in the context of a standard PC,
whereas the embedded system course goes beyond the boundaries
of the PC, connecting it to an outside physical world, and thus
adding another dimension. This is why, in the schedule of the
curriculum, the real-time system course is placed before the em-
bedded systems course.

IN4024, similar to IN4073, is split into 14 two-hour lectures and 7
four-hour lab sessions, with a strong emphasis on hands-on real-
time system development experience. The lab sessions are the
driving factor of the course, and this is in line with the new didac-
tic requirements of the university (see Section 5). Assessment is
carried out based on an 8 page research paper that the students
have to submit at the end of the module. This focus on research is
due to the fact that an MS degree requires scientific skills, in con-
trast to a BS which concentrates more on predefined implementa-
tion of tasks. Additional advantages of such an assessment are the
students’ improved research and writing skills when they enter
their final year MS projects. The lectures are intended to equip
them with the right terminology, and in the labs, they gain experi-
ence with doing their own research on a selection of subjects in
the real-time system domain. Typical number of students at regis-
tration is 100, going down to 60—70 in the first two lectures,
dropping to some 35 in the last lecture with just about 40 paper

submissions at the end of the module, all of which pass the
course. The quality of the submitted papers is usually high9.

4.1 Laboratories
The equipment of the labs comprises standard Linux PCs with the
RTAI real-time extension [22] installed. We do not permit the
students to use the full functionality of the real-time modules
provided, which, in fact, would require the students to have ad-
ministrative permission for loading and unloading their own real-
time modules. Instead, the system provides the LXRT module
which implements a user-level interface to RTAI’s real-time ser-
vices. This requires only normal user privileges with minor over-
all performance losses. RTAI is a freely available, easy to use
real-time environment that most students install on their own PCs
in order to be able to spend more time on the subject beyond the
scope of the lab sessions, and perform more thorough experi-
ments. We find this very positive. The real-time system lab is not
one single larger project, but rather based on a number of differ-
ent assignments that the students have to solve. They are sup-
posed to implement parts of the assignments in C, do some ex-
periments, e.g., timing measurements and devising schedules,
reflect on the problems encountered, and the solutions found dur-
ing the assignments. The assignments are designed in the form of
scenarios that would be typical in a normal working environment
in industry, such as “we need the worst-case execution time for
this algorithm”, “choose the best implementation of existing algo-
rithms for the constraints of this system”, or “which scheduling
strategy would be optimal under such circumstances”, etc. The
assignments represent the framework in which the students carry
out research. The following types of assignments are available:

− Comparison of standard Linux timing operations and
the RTAI timing operations, accuracy of time measure-
ments,

− Development of a high-resolution timer based on the
processor clock and comparison of that timer with the
standard Linux and RTAI timers,

− Development of a code framework under RTAI for
worst-case execution time (WCET) analysis experi-
ments and scheduling experiments

− Dynamic worst-case execution time analysis for stan-
dard algorithms, e.g., sorting, searching, computer
graphics, etc., optimization of algorithms toward higher
analyzability,

− Evaluation of dynamic timing analysis through code
coverage analysis,

− Design of constant execution time algorithms (WCET-
oriented programming),

− Search-based execution time analysis; comparison be-
tween manual testing, random testing, and application
of a genetic algorithm as test case generator,

9 It seems that either students make the effort and perform
well, or they drop out.

7

− Development of an instruction tracer for combined
static and dynamic timing analysis.

The assignments are solved in groups of 3-4 students, and they
provide a broad enough basis for many research topics. Each stu-
dent chooses from the subjects of the module a research topic for
the research paper, according to own preferences. Example sub-
missions of the past are:

− Priority-driven Algorithms for Safety-Critical Systems.

− Timing Analysis for Real-Time Systems.

− Using Advanced Genetic Algorithms to Improve Dy-
namic Testing.

− Implementation of a Constant Execution Time Sorting
Algorithm.

The students are very eager to come up with original ideas, which
makes reading the papers a pleasure.

4.2 Lectures
The lectures are intended to provide all the background knowl-
edge, terminology and concepts for carrying out the assignments
and writing the research paper. There is traditional style face-to-
face presentation, but a large amount of lecturing time is devoted
to discussions, questions, summaries, ad-hoc exercises and small
assessments, so-called mini-tests. The primary topics covered in
the lectures are about

− How to perform system domain analysis and derive
high-level system timing requirements,

− How to decompose the system timing requirements and
distribute them over the individual components,

− How to realize and implement software components
with timing requirements,

− How to perform static and dynamic timing analysis in
order to derive an execution schedule,

− How to implement a schedule with the means of the
platform used,

− How to deploy a system or parts thereof on the platform
used,

− How to test components and a system with timing re-
quirements,

− How to evaluate the afore-mentioned steps by taking a
development process view, and

− How to communicate this evaluation to others in terms
of paper writing (scientific writing).

The students are supposed to discuss most of the topics among
themselves and provide definitions and explanations. Their opin-
ions are collected to form a general picture of the terms and con-
cepts (supported through the lecturer). Some of the concepts are
suitable for exercises, e.g., worst-case path analysis for static
timing analysis, so in each lecture there is either an exercise of
20-30 minutes or a mini-test. In mini-tests, which is 5 questions to
be answered on paper, students can assess for themselves whether

they have understood the most important topics of previous lec-
tures, or whether they have grasped the essentials of an article that
they were supposed to read as homework. Each lecture closes
with a summary provided by the students.

4.3 Evaluation
The real-time systems course is now in its fourth edition, and it
has been improved considerably compared to the first time, in
particular, with respect to the diversity of the lab assignments and
the amount of student/student interaction in the lectures. The dif-
ficulty of the lab assignments has been increased considerably,
but also more support is being provided. Initially, students had to
do a lot more own programming work which meant that there was
not enough time for trying out different solutions and performing
more measurements. Although, now the assignments are more
complex and more difficult, the students can use more existing
code that they can incorporate into their own developments which
gives them much more leeway for experimenting.

The lectures are now much more interactive, and much time is
spent on exercises and discussions. According to course evalua-
tion sheets, the students appreciate the high level of interaction
and the fact that they are asked to “perform their own lectures”.
This, of course, costs a lot of time, so that coverage of the subject
had to be sacrificed for in-depth analysis of individual topics. In
our opinion, this is not necessarily a disadvantage, since the stu-
dents are now a lot more confident on the fewer topics covered.

Demanding a research paper as the single assessment of the mod-
ule is a bit ambivalent for two reasons. First, students like to be
awarded for whatever they have done, so completing assignments
and not getting course credits for them seems odd. Their assign-
ments could be collected and marked, but it would impose an
extremely high working load upon the lecturer. Not marking them
is simply a matter of budget. Second, in particular the first par-
ticipants feared that their provided papers would not be up to
standards, and they would fail the course because of their low
expected paper quality (another reason for having the assignments
marked). However, the submitted papers were very good; only 2
out of 45 submissions had to be resubmitted in the first year. All
subsequent students have now access to the best papers submitted
(4-5 papers every year) which gives them a much better idea of
what is required to pass the module, so that in the second round
all 42 submissions were of high quality. Despite the fact that
many are struggling, almost all students like the idea of submit-
ting a research paper. Most of them have never written a scientific
report or a paper, and they appreciate this opportunity to exercise
for their coming research assignment and master thesis project.
Every paper is going through a peer review by the students them-
selves, based on quality criteria provided, they can improve their
work, and then make the final submission10. A final review by the
lecturer provides them with concrete comments for improvement.
Such final assessment is feasible only because of the low number
of submissions (around 40). For larger courses, this would defi-
nitely not work.

10 This is the version to be marked.

8

5. DIDACTICS
New rules in the didactics and tuition development in Delft re-
quire from academic staff to participate in a training program
called the “Basiskwalifikatie Onderwijs” (BKO – basic qualifica-
tion tuition), a quality scheme carried out or set up in most uni-
versities in The Netherlands. The BKO is the most fundamental
training program for anybody planning to become a university
teacher in The Netherlands. It has been implemented in order to
impose a measurable base-line for teaching activities throughout
Delft University, but also among the other universities. The need
for improving the quality of teaching is mainly driven by the cur-
rent changes in higher education such as

− greater diversity of student capability including their
socio-cultural backgrounds,

− the introduction of more experience-stimulating courses
with projects and practicals,

− alignment according to the European standardization in
higher education and, last but not least,

− the introduction of university fees that causes students
to demand value for money.

The initial module of the BKO program, active and collabo-
rative learning (ACL), communicates skills for activating students
to engage in higher-order and self-directed learning processes.
Apart from that, there are other courses of the program that can be
chosen by a lecturer according personal preference, or motivated
by the outcome of an internal evaluation of the lecturer’s profes-
sional development. The list of courses offered comprises

− General didactical skills, such as individual coaching
and assessment of students, project based learning ap-
proaches and tutoring, development of web-based learn-
ing environments, and testing and assessment of learn-
ing outcome.

− Principles of teaching in English, such as introduction
to English-medium instruction, spoken English and
teaching skills for English-medium instruction, writing
course materials in English, intercultural communica-
tion in educational settings, and academic writing and
editing.

− Teaching with narrating and theater, such as teaching
based on techniques of the theater, and narrating in sci-
ence and technology.

The University’s didactic vision, and, hence, the focus of the
BKO is on communicating and training skills for active and col-
laborative learning [3][4]. ACL promotes instructional techniques
that help students engage in higher-order thinking and problem-
solving activities during class or seminar, and collaborative and
communicative activities involving other fellow students. Tradi-
tional university teaching focuses on making students “under-
stand” a subject through transmitting information via lecturing the
students. “Pouring knowledge into the students” depends on what
the teacher does and says. It is heavily teacher-centered. In con-
trast, ACL focuses on what the student does, and how the student
engages in learning activities. It sees the teacher more in the role
of the moderator and supporter [25]. Here, the primary task of the
teacher is to help create a positive learning context for the stu-

dents and moderate activities that encourage students to engage in
deep, or higher-order learning approaches [3]. Higher-order
(deep) learning approaches help students to apply knowledge,
hypothesize and reflect upon a subject, in contrast to lower-order
(shallow) learning approaches such as merely memorizing, identi-
fying, or describing subjects [2]. For example, as a rule of thumb,
Biggs [3] indicates that most people learn about 10% of what they
read (textbook), 20% of what they hear (lecture), but 70% of what
they discuss with others, and 80% of what they do and use in real
life. ACL propagates techniques that move learning away from
teacher-directed activities more towards self-directed activities
and peer-directed activities in order to get closer to the 70 or 80
percent. Peer-directed activities are particularly useful for elabo-
rating, broadening understanding, providing different points of
view, and obtaining self-insight by comparing with others. Self-
directed activities are suitable for in-depth understanding, moni-
toring and self-assessment.

Both courses outlined here implement ACL principles ac-
cording to the new university guidelines. Both apply student cen-
tered learning principles. Both the embedded systems course and
the real-time systems course do that by forming small groups,
cooperating in a large project. Additionally, the real-time systems
lectures have many self-directed activities such as exercises,
group discussions, and tests. Both courses put their main empha-
sis on the performance of the lab projects/assignments and use the
lectures more for supporting the actual practical work. Overall,
there is a great emphasis put on students carrying out their own
research work in an interactive and stimulating environment.

6. CONCLUSIONS
In this paper we have presented the new Delft MS program on ES
that has begun in the academic year 2006/2007. With respect to
the 40 EC mandatory part of the 120 EC program, the program
focuses on embedded software, ranging from UML to VHDL,
which is a departure from the more hardware-oriented approach,
such as offered by the Delft CE program. Another feature of the
mandatory program is its equalization of the students’ prior edu-
cational backgrounds during the first part of the program in order
to optimize the multidisciplinary education that underlies the ES
curriculum. Launched in the current academic year, no results are
yet available. Yet, the authors are convinced this is a step towards
a curriculum that will meet the industrial and academic require-
ments of the embedded systems field in The Netherlands.

7. ACKNOWLEDGMENTS
The national 3TU Embedded Systems MS curriculum, is a joint
effort by the three Dutch technical universities. The joint curricu-
lum has been authored by Jan-Friso Groote and Arlène Louiza
(Eindhoven University of Technology), Gerard Smit and Gerrit
van der Hoeve (University of Twente), and Arjan van Gemund
and Hans Tonino (Delft University of Technology).

8. REFERENCES
[1] ARTEMIS. European Platform for Advanced research and

Technology for Embedded Intelligence and Systems.
www.cordis.lu/artemis.

[2] J. Biggs and P. Moore. The Process of Learning. Prentice
Hall, 1993.

9

[3] J. Biggs and P. Moore. Teaching for Quality Learning at
University. Prentice Hall, 2003.

[4] C. Bonwell and J. Eison. Active learning: Creating excite-
ment in the classroom. ASHE-ERIC Higher Education Re-
port No. 1, George Washington University, Washington,
1991.

[5] Delft University of Technology. www.tudelft.nl.
[6] S. Edwards. Experiences teaching an fpga-based embedded

systems class. ACM SIGBED Review, 2(4):56–62, 2005.
www.cs.virginia.edu/sigbed/vol2_num4.html.

[7] Eindhoven University of Technology. www.tue.nl.
[8] Embedded Software Lab. www.rtess.ewi.tudelft.nl.
[9] European Joint Quality Initiative.

http://www.jointquality.org/.
[10] European Joint Quality Initiative. Shared ‘Dublin’ Descrip-

tors for Short Cycle, First Cycle, Second Cycle, and Third
Cycle Awards. http://www.jointquality.org/content/descript-
ors/CompletesetDublinDescriptors.doc, 18. October 2004.

[11] Faculty of Electrical Engineering, Mathematics, and Com-
puter Science. www.ewi.tudelft.nl.

[12] Faculty of Technology, Policy and Management.
www.tbm.tudelft.nl.

[13] A. v. Gemund. In4073 Course Web Site.
www.st.ewi.tudelft.nl/~gemund/Courses/In4073/index.html.

[14] A. v. Gemund. In4073 Resource Web Site.
www.st.ewi.tudelft.nl/~gemund/Courses/In4073/Re-
sources/index.html.

[15] A. v. Gemund and J. Tonino. Master of Embedded Systems,
Information Dossier in Support of the Application for the
New Graduate Studies Test. Technical report, Faculty of
Electrical Engineering, Mathematics, and Computer Science,
Delft University of Technology, Delft, The Netherlands,
Sept. 2005.

[16] H.-G. Gross. In4024 course web site. www.st.ewi.tudelft.nl/
gross/index files/Page348.html.

[17] IEEE-CS/ACM. Computing curricula 2005: The overview
report. www.computer.org/education/cc2001.

[18] ITEA. Technology Roadmap for Software Intensive Systems
2nd edition May 2004. www.itea-office.org/itea_roadmap_2.

[19] D. Jackson and P. Caspi. Embedded systems education: Fu-
ture directions, initiatives, and cooperation. ACM SIGBED
Review, 2(4):1–4, 2005.
www.cs.virginia.edu/sigbed/vol2_num4.html.

[20] J. Muppala. Experience with an embedded systems software
course. ACM SIGBED Review, 2(4):29–33, 2005.
www.cs.virginia.edu/sigbed/vol2_num4.html.

[21] TU Delft. Ms embedded systems elective courses.
www.sis.tudelft.nl.

[22] Politecnico di Milano. Rtai - the realtime application inter-
face for linux. www.rtai.org.

[23] A. Sangiovanni-Vincentelli and A. Pinto. Embedded systems
education: A new paradigm for engineering schools? ACM
SIGBED Review, 2(4):5–14, 2005.
www.cs.virginia.edu/sigbed/vol2_num4.html.

[24] R. Seviora. A curriculum for embedded system engineering.
ACM Trans. Emb. Comp. Syst., 4(3):569–586, August 2005.

[25] T. Shuell. Cognitive conceptions of learning. Review of
Educational Research, 56:411–436, 1986.

[26] University of Twente. www.utwente.nl.
[27] S. Woutersen and A. v. Gemund. X32 Web Site.

x32.ewi.tudelft.nl.

10

http://www.jointquality.org/
http://www.jointquality.org/content/des%1Fcrip%1Ft%1Fors/CompletesetDublinDescriptors.doc
http://www.jointquality.org/content/des%1Fcrip%1Ft%1Fors/CompletesetDublinDescriptors.doc
http://www.ewi.tudelft.nl/
http://www.tbm.tudelft.nl/
http://www.utwente.nl/
http://x32.ewi.tudelft.nl/

	1. INTRODUCTION
	2. DELFT ES PROGRAM
	2.1 Delft Focus
	2.1.1 Embedded Software
	2.1.2 Dependable Systems

	2.2 Homologation
	2.3 Mandatory Courses
	2.4 Elective Courses
	2.5 Soft Skills

	3. COURSE: EMBEDDED SYSTEMS
	3.1 Lab Project
	3.1.1 Experimental Setup
	3.1.2 Resources

	3.2 Design Challenges
	3.3 Evaluation

	4. COURSE: REAL-TIME SYSTEMS
	4.1 Laboratories
	4.2 Lectures
	4.3 Evaluation

	5. DIDACTICS
	6. CONCLUSIONS
	7. ACKNOWLEDGMENTS
	8. REFERENCES

